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Attention is called to the following two papers, one by R. K. Moore, the other by W. L.
Pritchard and J. A. Mullen. Since the papers are very closely related, the objection might
arise that either one or the other should be published, but not both. However, the editorial
board felt that both papers are deserving of considerable credit, and indeed the subject itself
is of great interest, not only to microwave people, but to systems people as well.

Furthermore, although Mr. Moore’s paper was received by the Editor of these TRANS-
ACTIONS on August 7, 1956, whereas Messrs. Pritchard and Mullen’s paper was not received
until October 1, 1956, it is only fair to point out that the latter paper had been submitted to
the Editor of PROCEEDINGS some time prior to September of last year.—The Editor

The Effects of Reflections from Randomly Spaced
Discontinuities in Transmission Lines”
RICHARD K. MOORE#}

Summary—Reflections from randomly spaced transmission line
discontinuities can cause serious attenuation and distortion of pulses
in the lines, and the presence of reflections at the sending end may
be undesirable. The effect of these discontinuities may be described
in terms of the mathematics for combining outputs from oscillators
with random frequencies. The location of the discontinuity corre-
sponds fo the frequency of an oscillator. The phase constant of the
transmigsion line is analogous to time for the oscillators. Use of
spectrura and filter analogies permits approximate determination of
discontinuity locations from measurements. Use of known space and
size distributions permits statistical prediction of attenuation and of
size of reflected wave at the sending end.

continuities which may affect their operation—

either by causing undesired reflections at the
input, or by increasing the attenuation over that which
would be present without the discontinuities.’™ These
discontinuities may be regularly spaced due to such
things as beads supporting center conductors for coaxial
transmission lines, couplings between individual sections
of waveguide, or bends associated with the way in which
a coaxial line was rolled up during storage. On the other
hand, they may be randomly spaced due to such things
as random breakage during manufacture, dents in outer

TRANSMISSION lines often contain small dis-
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conductors of solid coaxial lines or in waveguide, random
migration of the center conductor in coaxial lines, either
flexible or solid, and pinching of a coaxial line by various
causes. In this paper, expressions are developed for the
additional attenuation and reflection due to randomly
spaced small discontinuities.

For randomly spaced discontinuities, a statistical
relation has been established between the reflection or
attenuation-vs-frequency curve and the spacing of dis-
continuities. It is shown that the mathematics for re-
flections from randomly spaced discontinuities is the
same as that for the combination of large numbers of
oscillators with random frequencies. The technique of
analysis used to obtain the frequency spectrum for the
oscillators has been used here to locate the discontinui-
ties. Our analogy compares the frequency of the indi-
vidual oscillator with the coordinate (on the transmis-
sion line) of the individual discontinuity. The time
variable, in the case of oscillators, is analogous to the
phase constant of the transmission line.

The methods shown may be used to calculate the
effects of discontinuities on attenuation and reflection
if the sizes and magnitude of the discontinuities are
known. They may also be used to ascertain, as nearly as
possible, the size and location of discontinuities by using
a measurement of the attenuation or reflection as a
function of frequency. Because this measurement may
be made over only a limited range of {requencies in any
practical case, the exact location and number of discon-
tinuities cannot be specified. Rather, a spectrum may
be specified which gives the best idea as to the size and
location of discontinuities which can be obtained with
any specified frequency range for the measurement.

Fig. 1 represents a cable with discontinuities spaced
a distance Ax; apart along its entire length. The reflec-
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Fig. 1.

tion coefficient I'; for voltage is assumed to be small so
that only first-order reflections need be considered; i.e.,
[T «1.

In the figure and subsequent discussion,

V+ =incident input;
V-=reflected wave at input;
Vi=total input=TV+-V—;
Vi, =total output;
v =a-78, the propagation constant;
L =line length;
n=index of discontinuities;
N =total number of discontinuities;
T' =voltage reflection coefficient.

The voltage reflected back to the origin of the line is
given, in the notation of this paper, by

N
V- = Z (V+e—axn1‘ne—jﬁxn) (eﬂaxne—iﬁz@ . (1)

n=1

Here, the coordinate of the nth reflecting discontinuity
is given by x,. This equation is made up in the following
manner. The first bracket represents the magnitude and
phase of the reflected wave at the wnth discontinuity.
The magnitude of the incident wave at the origin is
given by 17+. The first exponential gives the effect of at-
tenuation on the line from the origin to the point of dis-
continuity. I', represents the magnitude of the voltage
reflection coefficient, and the second exponential term
represents the phase shift down the line from the origin
to the nth discontinuity. The expression in the second
bracket shows the additional effect of transmitting this
wave from the reflection point back to the origin, with
both phase and amplitude terms. In this equation only
first-order reflections are considered. If |T| is large
enough, second-order effects may be significant; so the
analysis here only applies to small II‘I .

Note also that the effect on the transmitted wave has
been neglected. In Fig. 1, this effect is shown at the top
but not at the bottom.

To simplify the form of this expression for calculating
the probable amplitude of the reflected wave, the at-
tenuation factors and the reflection coefficients have
been combined in one symbol, 4, and the two phase
factors have also been combined. The result is given by

~
V== V+ D, A, %, (2)
n=1
If we assume random spacing for the discontinuities so
that the principal value of the phase term (28x,) may
with equal likelihood take on any value between zero
and 2, then we may treat the resulting sum in the same
way that one would treat the result of combining the
outputs of a large number of oscillators having fre-
quency 2x, and time variation as (—§).

When the conditions stated in the preceding para-
graphs are met, whether it be for reflections from
randomly spaced discontinuities or for waves from oscil-
lators of various frequencies, the mean square value of
the resultant vector obtained by summing up all the
components is given by the sum of the squares of the
various component vectors. This is indicated by

- N
| v=]r= (rH2 X 4.2 (3)
n=1

For time variations, rather than variations with 3,
this is the same as saying the average power resulting
from a large number of waves of different fre quencies
is equal to the sum of the power contained in the various
waves. This is a well-known phenomenon and applies
even though the waves are harmonically related.

Eq. (3) is an average over 3, the phase propagation
constant. If will be recognized that, for the transverse
electromagnetic mode, § varies only as the first power
of frequency and, therefore, this may also be considered
as an average over frequency; thus, it might be meas-
ured by making measurements at a large numher of
frequencies and averaging them. In a waveguide, of
course, or in an inhomogeneous medium, 8 may vary
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with some other parameter besides frequency or may
vary with frequency in a more complex manner than a
straight linear variation.

If one is to utilize measurements of the reflected wave
or transmitted wave to determine an average discon-
tinuity, or conversely, if one is to use an average value
of discontinuity to determine the reflected voltage or
transmitted voltage, it is necessary to separate the
effect of the reflection coefficient from the attenuation
in the line. If there is no relationship between the in-
dividual reflection coefficients and their position on the
line, that is, if their variations about the average reflec-
tion coefficient are random and independent of location,
one may assume

A, = Te2amn, (4)

where T represents the mean value of the reflection co-
efficient. The assumption of random distribution of the
coordinates x, means that

d.
Prob(x<xn<x—l—dx)=fx; (5)

that is, the probability of finding «, in any interval dx
for a line of length L is the length of the interval divided
by the total length of the line.

Utilizing this probability, one may compute the ex-
pected value for the mean square voltage as given by
(3) by use of the relation

N L - dx
b(£ 1) [ 5
n==1 (1] (v

It should be noted that this represents propagation con-
tinuously down the transmission line; that is, the entire
length of the line is illuminated at any one time.

Eq. (6) defines a mean square value of 4 which can be
used in analysis of the performance of lines from meas-
urements or in prediction of their performance based
upon knowledge of discontinuities and their location.
The result is given by

NAZ  (6)

| V—|2 = (V+)? NT®
B 4ol

(1 — etel). (7N

From this we can see that the magnitude of the reflected

root-mean-square voltage is given by
N(1—etly

-
dol

The input voltage to the line is the sum of the incident
and reflected voltages, as measured at the input. For the
case discussed above, the input voltage is, therefore,

given by
¢) (9)

Ve = (| V- (8)

V,~=V+(1+
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where ¢ is the phase angle of 7—.

The relationship of the phase of the reflected wave to
that of the transmitted wave is important in determin-
ing the magnitude of the input voltage. The phase angle
may take on with equal likelihood any value between
zero and 2, hence

dé

Prob (¢ < ¢, < ¢ + dop) = P (10)
nw

It should be noted that the reflected voltage has a
magnitude which is known only statistically for any
given 3. Its variation is the same as that for the magni-
tude of a white noise voltage since (2) indicates that the
same representation may be used for reflected voltage,
with 8 as the variable, as is used for noise voltage where
time is the variable.

The distribution function for the reflected voltage is
called the Rayleigh distribution if the total number of
terms in the sum of (2) approaches infinity. The
Rayleigh distribution is the result of an infinite-step
random walk in a plane, and this is a well-known prob-
lem of statistics. It is readily seen upon examination of
the distribution functions for Rayleigh and for finite
random walks that, at least in the case where all steps
are equal in length, a five-step random walk gives essen-
tially the same distribution curve, except in the extreme
limits, as an infinite number of steps would give. Since,
in general, one is interested here in the situation in
which there is a fairly large number of discontinuities,
one may without large error replace the distribution for
the resultant voltage with a finite number of discontinui-
ties by the equivalent Rayleigh distribution. The result
of doing this is shown by

woo,
Prob (V < |V-| <V +4dV) = e eVINAGY, (1)
T

The distribution of V= [or (| V=|/V*)e* of (5)] is a
two-dimensional one given by

P(V-)dVd$ = g— P(|V-|)avde.

r(5) = [0+

It should be noted that this is identical statistically to
the problem of the combination of a large steady signal
and a Rayleigh distributed signal.’ The resulting distri-
bution function for the magnitude, converted from
Rice’s notation to ours, is given by

(12)

Hence

(13)

5 S, 0. Rice, “Mathematical analysis of random noise,” Bell Sys.
Tech. J., vol. 23, pp. 282-332; July, 1944, and vol. 24, pp. 46-156;
January, 1945.
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where I, is the Bessel function of the first kind with
imaginary argument. One may use this expression to
calculate the probable loss in the transmission line. The

ratio of output to input voltage of the line is given by
Vs | V/V+

Loss = | —| =
Vi/V+

The distribution for loss may be obtained from (14)
by use of the identity from probability theory

dy}
dx
If we assume that V; does not vary with 8 (to a first-
order approximation), the resultant loss distribution

is given by
() ()

| Vel /v | vel/v

Curves of P(] Vi] / V1) are given by Rice and others
so that this probability may be readily plotted. Utilizing
results which may be derived for V,, we have

[0
R

R =
Q(R) e
= Prob [R < Loss < R + dR].

=R (15)

P(x) = Q(y)

(16)

Q(R) =

(16a)

Egs. (11) and (16a) give the probability of any ampli-
tude of reflection or loss, respectively. Thus, if one is
interested in the reflected signal, he may use (11) to
find the probability of it taking on any value; and if one
is interested in the attenuation to a transmitted wave,
he may use (16a).

Normally, one would not be interested in a reflection
if the wave filled the entire line as the case of a continu-
ous wave. On the other hand, if a short pulse were trans-
mitted down the line, only a portion of the line would
be illuminated at any given time and a reflected signal
would occur after the end of the transmitted pulse
which might have some deleterious or desirable effect
on equipment located at the transmitting point. When
the short pulse is used, the integral of (6) must be carried
out over the limits of the illuminated region as indicated

in
M 9
E(ZA;> =
N=1

ctf2
(T) 2e—dazx

c(t—7)/2

16b
(c7/2) (o
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where M is the number of discontinuities illuminated, #
is the time from start of transmission of the pulse, 7 is
the pulse length, and all the other quantities are the
same as in (6).

The illumination of the line is illustrated in Fig. 2.
At a given time during transmission of the pulse the
illumination is as indicated in Fig. 2(a), but the portion
contributing to the reflection at that time is shown in
Fig. 2(c). Since the reflected wave must travel down and
back, only the illuminated region corresponding to a
round-trip time ¢ will contribute. This has the same effect
as if the transmission velocity were halved in the line,
insofar as reflected waves are concerned. Figs. 2(b) and
2(d) show the situation where the end of the pulse has
occurred (16b).
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Fig. 2.

When this situation prevails, the effect of the reflected
wave on the total loss is noted as a reduction in ampli-
tude plus an effect on Vs, similar to that involved in
derivation of (16), in which the reflections which occur
during transmission of the pulse are the only ones which
are significant. Thus, in such a case, the integration for
determining V; modification would have to be carried
out no further than from zero to 1 pulse length along
the line. The transmitted pulse would be distorted at
different points by an amount determined by carrying
this integration to an appropriate upper limit.

Information about the spacing, magnitude, and loca-
tion of the discontinuities in the line can be found by
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studying the magnitude of the reflected wave as a func-
tion of B. In the succeeding development, it will be as-
sumed that one is actually measuring the amplitude of
the reflected wave. This can be done by using a pulse
to excite a portion of the line, or it can be done by going
backwards through the development which results in
(16).

Consider the reflected wave as a function of 8 as indi-
cated in

A(g) = : (17)

N
Z A e itanb
n=1

This is a quantity which may be measured, provided
one knows the magnitude of the incident pulse. The
autocorrelation vs 8 of such a measured function may
be calculated; (8 would be varied by varying frequency).
The autocorrelation is given by

B(g) = lim lA@®)] | 4@+ 8)|db.  (18)

By itself the autocorrelation has no particular signifi-
cance in this case since we are really interested in the
space variation, not f variation. Typical examples of
A(B) and B(B) are shown in Fig. 3.

Transmission Line Quantities
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Fig. 3—Reflected wave functions and their time series analogs.

We may obtain the space variation from the auto-
correlation by utilizing the relationship that the cosine
transform of the autocorrelation function is the power
spectrum. This is used in time series analysis quite fre-
quently, in which case the autocorrelation vs time is
computed and the transform is taken to obtain the spec-
trum of power as a function of frequency. In this case,
we compute the autocorrelation as a function of 8 and
transform in such a way as to obtain a power spectrum
as a function of x. Actually, of course, since there are
discrete discontinuities, the power spectrum of reflec-
tion vs x should contain discrete lines; and, in fact, a
complete Fourier analysis would give the lines. This is
indicated in Fig. 4. Since we cannot measure a complete
range of B, it is not possible to obtain the exact locations
and magnitudes of the discontinuities.
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If, instead of a number of discrete discontinuities,
there were a continuum of small discontinuities, then
the spectrum would itself be continuous as a function of
distance. In that case, the magnitude of the spectrum
would be the reflected power within a length dx at a
distance x from the origin. Because of our incomplete
information (due to lack of an infinite range in fre-
quency), such a continuous spectrum will be obtained
anyway, and it will give some indication of the location
of the discrete reflectors. Fig. 5 illustrates this effect,
and the various quantities used in describing it.

lt‘ ll‘l.|
K —-

Fig. 4—Discontinuities and time series analogs.
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Fig. 5—Effect of finite frequency range of measurement on inferred
distance spectrum of discontinuities, and its time-series analog.

The expression for determining the spectrum is given

by

a(w) = 4fwA(B) cos xBdg. (19)

Instead of the reflection function 4, we will actually
use a function 4, which is measured over the range
B1 to Be, since it would be impossible to make measure-
ments over the entire range of 8 (or frequency).
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A48 = 0, B <B: . B2 — B\ P?
18), B1<B<B B, AN
== i 3 — 1
' ? o(x) = . (25)
= 0, :82 < B' (20)

Associated with this will be an autocorrelation function

B.B) = f @] | 4sre]a @

and associated with the autocorrelation function will be
a modified space power spectrum given by

a,(x) = 4fwBu(B) cos xB3dB. (22)

It is possible to write B, in terms of A instead of 4, by
introducing a function:

=17 BI<B<582
ZO’ ﬁ2<6-

When this is done, we have B,
Bu(8)= fw[lAa))l | A+ 8)|][UG U + B)ldb. (21a)

A is a stochastic variable and U may be considered as an
independent stochastic variable; that is, the probability
of an occurrence of one should have no effect on the
probability of occurrence of the other. If we assume this
sort of independence of 4’s and U’s, we may utilize a

theorem of probability which states that
W=7 (23)

The result of application of this theorem to (21a) is

5.6)= [ “14G)| | AG+8) | db fo “U® U+

=B(B)V (), (21b)

where Vis a triangular window function associated with
the autocorrelation and given by

Ve =0, B < — (82— By
=1+p)B2—B1), —(Ba—p)<B<O
={1—=08)(B2—B), 0<B<(B:— B

= 0. (B2 — By < B. (21¢)
In this notation, (22) becomes
a(w) = 4 [ BEVE) cos wsap, (22a)
0

and @, may also be given in terms of the convolution

of a and v as
au(®) = a(x)x0(%) (24)

where v is the transform of V and is given by

The physical meaning of this is that the lines of the
spectrum, a, are looked at through a space window or a
space filter », which has the form of (sin ax/x)2 This
means that, instead of the discrete lines, one sees each
line spread out to the shape of v. If the lines are far
enough apart in the power spectrum (that is, if the dis-
continuities are far enough apart), then the spectrum
measured will be a succession of these window functions
and one can easily locate the individual lines and their
magnitudes and, hence, the individual discontinuities
and their magnitude. On the other hand, if the discon-
tinuities are fairly close together, there will be a jum-
bling of these responses to the various discontinuities
and it will not be possible to determine the exact loca-
tion and magnitude of the individual discontinuities
but only the average distribution of discontinuities and
their average magnitude at any given spot. This cor-
responds closely to the time function situation in which
one is looking for discrete lines in a frequency spectrum
but is forced to take an inaccurate determination of
these lines due to the fact that he must use a finite
sample rather than observing for an infinite period of
time.

Using this method of analysis on the reflected pulse
should make it possible to determine without too much
difficulty the location and size of discontinuities. The
application of this method to the case where loss is
measured will be somewhat harder because of the com-
plications introduced by going through the process of
(15), but still should be quite feasible.

It has been shown that distribution functions of the
values for reflected and transmitted waves on a trans-
mission line with randomly spaced discontinuities may
be computed if something is known of the probability
distribution, average size, and number of the discon-
tinuities. Conversely, it is shown that a measurement of
transmission or reflection as a function of frequency
may be used to locate approximately the discontinuities
causing the reflection.

The techniques illustrated here should be useful both
i determining the performance of known transmission
lines and in establishing the mechanism and location for
reflections in transmission lines whose discontinuous
properties are not known.
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