
~RE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUE%

.%ttention is called to the following two papers, one by 1?. K. Moore, the other by It’. L.
Pritchard and J. .4. Mullen. Since the papers are very closely related, the objection might

arise that either one or the other should be published, but not both. Howe\-er, the editorial

board felt that both papers are deserving of considerable credit, and indeed the subject itself

is of great interest, not only to microwave people, but to systems people as well.
Furthermore, although Lfr. lMoore’s paper was recei~,ed by the Editor of these TRANS-

#iCTIONS on August 7, 1956, whereas Messrs. Pritchard and Mullen’s paper was not received

until October 1, 1956, it is only fair to point out that the latter paper had been submitted to

the Editor of PROCEEDINGS some time prior to September of last year.— Z%e Editor

The Effects of Reflections from Randomly Spaced

Discontinuities in Transmission Lines*

RICHARD K. MOORE~

fhmunary-Reflections from randomly spaced transmission line
discontinuities can cause serious attenuation and distortion of pulses

in the lines, and the presence of reflections at the sending end may
be undesirable. The effect of these discontinuities maybe described
in terms of the mathematics for combining outputs from oscillators
with random frequencies. The location of the discontinuity corre-

sponds to the frequency of an oscillator. The phase constant of the
transmission line is analogous to time for the oscillators. Use of

spectrum and filter analogies permits approximate determination of
discontinuity locations from measurements. Use of known space and

size distributions permits statistical prediction of attenuation and of

size of reflected wave at the sending end.

T RANSM ISSION lines often contain small dis-

continuities which may affect their operation—

either by causing undesired reflections at the

input, or by increasing the attenuation over that which

would be present without the discontinuities. 1–4 These

discontinuities may be regularly spaced due to such

things as beads supporting center conductors for coaxial

transmission lines, couplings between individual sections

of waveguide, or bends associated with the way in which

a coaxial line was rolled up during storage. On the other

hand, they may be randomly spaced due to such things

as ranclom breakage during manufacture, dents in outer
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conductors of solid coaxial lines or in waveguide, random

migration of the center conductor in coax~al lines, either

flexible or solid, and pinching of a coaxial line by various

causes. In this paper, expressions are developed for the

additional attenuation and reflection due to randomly

spaced small discontinuities.

For randomly spaced discontinuities, a statistical

relation has been established between the reflection or

attenuation-vs- frequency curve and the spacing of dis-

continuities. It is shown that the mathematics for re..

flections from randomly spaced discontinuities is the

same as that for the combination of large numbers of

oscillators with random frequencies. The technique of

analysis used to obtain the frequency spectrum for the

oscillators has been used here to locate the discontinui-

ties. Our analogy compares the frequency of the indi-

vidual oscillator with the coordinate (on the transmis-

sion line) of the individual discontinuity. The time

variable, in the case of oscillators, is analogous to the

phase constant of the transmission line.

The methods shown may be used to calculatr the

effects of discontinuities on attenuation and reflection

if the sizes and magnitude of the discontinuities are

known. They may also be used to ascertain, as nearly as

possible, the size and location of discontinuities by using

a measurement of the attenuation or :reflection as a

function of frequency. Because this measurement may

be made over only a limited range of frequencies in any

practical case, the exact location and number of discon-

tinuities cannot be specified. Rather, a spectrum may

be specified which gives the best idea as to the size and

location of discontinuities which can be obtained with

any specified frequency range for the measurement.

Fig. 1 represents a cable with discontinuities spaced

a distance Ax~ apart along its entire length. The reflec-
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tion coefficient I’; for voltage is assumed to be small so

that only first-order reflections need be considered; i.e.,

~r,l<<l.

In the figure and subsequent discussion,

V+= incident input;

V– = reflected wave at input;

Vi= total input = V++ V-;

Vt = total output;

T = a +.IP, the propagation constant;

L = line length;

n = index of discontinuities;

N= total number of discontinuities;

I’= voltage reflection coefficient.

The voltage reflected back to the origin of the line is

given, in the notation of this paper, by

N
v– = ~ (~+e–a..rne–i~z.) (e–az.e–iBzn). (1)

.=1

Here, the coordinate of the nth reflecting discontinuity

is given by x.. This equation is made up in the following

manner. The first bracket represents the magnitude and

phase of the reflected wave at the nth discontinuity.

The magnitude of the incident wave at the origin is

given by V+. The first exponential gives the effect of at-

tenuation on the line from the origin to the point of dis-

continuity. l?. represents the magnitude of the voltage

reflection coefficient, and the second exponential term

represents the phase shift down the line from the origin

to the nth discontinuity. The expression in the second

bracket shows the additional effect of transmitting this

-wave from the reflection point back to the origin, with

both phase and amplitude terms. In this equation only

first-order reflections are considered. If \ r I is large

enough, second-order effects may be significant; so the

analysis here only applies to small I r 1.

Note also that the effect on the transmitted wave has

been neglected. In Fig. 1, this effect is shown at the top

but not at the bottom.

To simplify the form of this expression for calculating

the probable amplitude of the reflected wave, the at-

tenuation factors and the reflection coefficients have

been combined in one symbol, A, and the two phase

factors have also been combined. The result is given by

AT

n=l

If we assume random spacing for the discontinuities so

that the principal value of the phase term (2,Bx.) may

with equal likelihood take on any value between zero

and 2r, then we may treat the resulting sum in the same

way that one would treat the result of combining the

outputs of a large number of oscillators having fre-

quency 2x% and time variation as ( –~).

When the conditions stated in the preceding para-

graphs are met, whether it be for reflections from

randomly spaced discontinuities or for waves from oscil-

lators of various frequencies, the mean square value of

the resultant vector obtained by summing up all the

components is given by the sum of the squares of the

various component vectors. This is indicated by

N

[ v-l’= (v+)’ XA.’. (3)
?L=I

For time variations, rather than variations with ~,

this is the same as saying the average power resulting

from a large number of waves of different fre quencies

is equal to the sum of the power contained in the various

waves. This is a well-known phenomenon and applies

even though the waves are harmonically related.

Eq. (3) is an average over ~, the phase propagation

constant. If will be recognized that, for the transverse

electromagnetic mode, I? varies only as the first power

of frequency and, therefore, this may also be considered

as an average over frequency; thus, it might be meas-

ured by making measurements at a large number of

frequencies and averaging them. In a waveguide, of

course, or in an inhomogeneous medium, O may vary
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with some other parameter besides frequency or may

vary with frequency in a more complex manner than a

straight linear variation.

If one is to utilize measurements of the reflected wave

or transmitted wave to determine an average discon-

tinuity, or conversely, if one is to use an average value

of discontinuity to determine the reflected voltage or

transmitted voltage, it is necessary to separate- the

effect of the reflection coefficient from the attenuation

in the line. If there is no relationship between the in-

dividual reflection coefficients and their position on the

line, that is, if their variations about the average reflec-

tion coefficient are random and independent of location,

one may assume

where ~ represents the mean value of the reflection co-

efficient. The assumption of random distribution of the

coord~nates x. means that

that is, the probability of finding x. in any interval dx

for a line of length L is the length of the interval divided

by the total length of the line.

Utilizing this probability, one may compute the ex-

pected value for the mean square voltage as given by

(3) b> use of the relation

It should be noted that this represents propagation con-

tinuously down the transmission line; that is, the entire

length of the line is illuminated at any one time.

Eq. (6) defines a mean square value of A which can be

used ~n analysis of the performance of lines from m~as-

urements or in prediction of their performance based

upon knowledge of discontinuities and their location.

The result is given by

(7)

From this we can see that the magnitude of the reflected

root-mean-square voltage is given by

v.- = (1 V-I’)’12 = ~+p $’”N( 1 — e–J” L)

4ciL
. (8)

The input voltage to the line is the sum of the incident

and reflected voltages,asmeasured at the input. For the

case discussed above, the input voltage is, therefore,

given by

(9)

where ~ is the phase angle of V–.

The relationship of the phase of the reflected wave to

that of the transmitted wave is important in determin-

ing the magnitude of the input voltage. The phase angle

may take on with equal likelihood any value between

zero and 27r, hence

(10)

It should be noted that the reflected voltage has a

magnitude which is known only statistically for any

given (3. Its variation is the same as that for the m~agni-

tude of a white noise voltage since (2) indicates that the

same representation may be used for reflected voltage,

with /3 as the variable, as is used for noise voltage where

time is the variable.

The distribution function for the reflected voltage is

called the Rayleigh distribution if the total number of

terms in the sum of (2) approaches infinity. The

Rayleigh distribution is the result of an infinite-step

random walk in a plane, and this is a well-known prob-

lem of statistics. It is readily seen upon examination of

the distribution functions for Rayleigh and for finite

random walks that, at least in the case where all steps

are equal in length, a five-step random walk gives essen-

tially the same distribution curve, except in the extreme

limits, as an infinite number of steps would give. !Since,

in general, one is interested here in the situation in

which there is a fairly large number of discontinuities,

one may without large error replace the distribution for

the resultant voltage with a finite number o f discontinui-

ties by the equivalent Rayleigh distribution. The result

of doing this is shown by

Prob (V < I V- I < V + dV) = ~, e-V’/NpdV. (11)

The distribution of Jz- [or (\ 1~-1 / V~-)e’~ of (5)] is a

two-dimensional one given by

P(V–)dVd@ = ~m I’( I V- I )dVdcjJ. (12)

Hence

‘(%)=‘[(1+‘v;:’:)] ’13)
It should be noted that this is identical statistically to

the problem of the combination of a large steady signal

and a Rayleigh distributed signal.5 The resulting ldistri-

bution function for the magnitude, converted from

Rice’s notation to ours, is given by

5 S. 0. Rice, “Mathematical analysis of random noise, ” Beli Sys.
T.cIz. J., vol. 23, pp. 282-332; July, 1944, and vol. 24, pp. 46-156;
January, 1945.
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(
P-

exp[-l+~~y]~o(j~j$) (14)

where 10 is the Bessel function of the first kind with

imaginary argument. One may use this expression to

calculate the probable loss in the transmission line. The

ratio of output to input voltage of the line is given by

v, v,/v+
Loss =fi=— = R.

Vi/V+
(15)

?.

The distribution for loss may be obtained from (14)

by use of the identity from probability theory

If we assume that V, does not vary with (3 (to a first-

order approximation), the resultant loss distribution

is given by

‘(%) ‘2P(%0
Q(R) = R’

I Vd /V+ = I V,l,v+ “ (16)

Curves of -P( \ Vi I /V+) are given by Rice and others

so that this probability may be readily plotted. Utilizing

results which may be derived for Vt, we have

‘2P (1 + 7)Ne-aL

[ R 1
Q(R) =

(1 + I’)Ne-~~

= Prob [R < Loss < R + dR]. (16a)

Eqs. (11) and (16a) give the probability of any ampli-

tude of reflection or loss, respectively. Thus, if one is

interested in the reflected signal, he may use (11) to

find the probability of it taking on any value; and if one

is interested in the attenuation to a transmitted wave,

he may use (16a).

Normally, one would not be interested in a reflection

if the wave filled the entire line as the case of a continu-

ous wave. On the other hand, if a short pulse were trans-

mitted down the line, only a portion of the line would

be illuminated at any given time and a reflected signal

would occur after the end of the transmitted pulse

which might have some deleterious or desirable effect

on equipment located at the transmitting point. When

the short pulse is used, the integral of (6) must be carried

out over the limits of the illuminated region as indicated

in

where M is the number of discontinuities illuminated, t

is the time from start of transmission of the pulse, r is

the pulse length, and all the other quantities are the

same as in (6).

The illumination of the line is illustrated in Fig. 2.

At a given time during transmission of the pulse the

illumination is as indicated in Fig. 2(a), but the portion

contributing to the reflection at that time is shown in

Fig. 2(c). Since the reflected wave must travel down and

back, only the illuminated region corresponding to a

~ound-trij time twill contribute. This has the same effect

as if the transmission velocity were halved in the line,

insofar as reflected waves are concerned. Figs. 2(b) and

2(d) show the situation where the end of the pulse has

occurred (16b).

a) 1

b)

e)

d)

Illumination at time t I
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I I
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C(t-d Ct
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return at time t

T t<% L.

I

I
t

I 1 f-

C(t-d Ct 1-
2 -z” t>%

Fig. 2.

When this situation prevails, the effect of the reflected

wave on the total loss is noted as a reduction in ampli-

tude plus an effect on Vi, similar to that involved in

derivation of (16), in which the reflections which occur

during transmission of the pulse are the only ones which

are significant. Thus, in such a case, the integration for

determining Vi modification would have to be carried

out no further than from zero to ~ pulse length along

the line. The transmitted pulse would be distorted at

different points by an amount determined by carrying

this integration to an appropriate upper limit.

Information about the spacing, magnitude, and Ioca-

tion of the discontinuities in the line can be found by
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stud yi ng the magnitude of the reflected wave as a f unc-

tion of ~. In the succeeding development, it will be as-

sumed that one is actually measuring the amplitude of

the reilected wave. This can be done by using a pulse

to excite a portion of the line, or it can be done by going

backwards through the development which results in

(16).

Consider the reflected wave as a function of P as indi-

cated in

(17)
I a=l I

This is a quantity which may be measured, provided

one knows the magnitude of the incident pulse. The

a utoccn-relation vs d of such a measured function may

be calculated; (~ would be varied

The autocorrelation is given by

;*W J-JA(b)lB(p) = hm

by varying frequency).

I ~(b + 6) \ db. (18)

13y itself the autocorrelation has no particular signifi-

cance in this case since we are really interested in the

space variation, not 6 variation. Typical examples of

A (f?) and B(6) are shown in Fig. 3.

Transmissmn Line CJwntities

L
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:2
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R(T)
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T1me Series Equivalents

t-+

L
‘T-

R(t) is autocorrelation of f(t)

Fig. .?—Reflected wave functions and their time series analogs.

We may obtain the space variation from the auto-

correlation by utilizing the relationship that the cosine

transform of the autocorrelation function is the power

spectrum. This is used in time series analysis quite fre-

quently, in which case the autocorrelation vs time is

computed and the transform is taken to obtain the spec-

trum of power as a function of frequency. In this case,

we compute the autocorrelation as a function of /3 and

transform in such a way as to obtain a power spectrum

as a function of x. Actually, of course, since there are

discrete discontinuities, the power spectrum of reflec-

tion vs x should contain discrete lines; and, in fact, a

complete Fourier analysis would give the lines. This is

indicated in Fig. 4. Since we cannot measure a complete

range of ~, it is not possible to obtain the exact locations

and magnitudes of the discontinuities.

If, instead of a number of discrete discontinuities,

there were a continuum of small discontinuities, then

the spectrum would itself be continuous as a function of

distance. In that case, the magnitude of the specn-um

would be the reflected power within a length dx at a

distance x from the origin. Because of our incomplete

information (due to lack of an infinite range in fre-

quency), such a continuous spectrum will be obtained

anyway, and it will give some indication of the location

of the discrete reflectors. Fig. 5 illustrates this effect,

and the various quantities used in describing it.

+l,,llllli +,lil,l,
~-+- Ll+

F(LI) is spec!trum of f(t)

Fig. 4—Discontinuities and time series analogs.
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Fig. 5—Effect of finite frequency range of measurement on inferred
distance spectrum of discontinuities, and its time-series analog.

The expression for determining the spectrum is given

by

J

m

a($) = 4 ~ (~) COS @d& (19)
o

Instead of the reflection function A, we will actually

use a function A ~ which is measured over the range

f?, to & since it would be impossible to make measure-

ments over the entire range of ~ (or frequency).
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A.(p) = o, O<P1

= .4 (6), 131<B<P2

= o, B2 < P. (20)

Associated with this will be an autocorrelation function

and associated with the autocorrelation function will be

a modified space power spectrum given by

s

cc

a.(x) = 4 Bu(~) COS x~d~. (22)
o

It is possible to write B. in terms of A instead of A u by

introducing a function:

u(@ = o, D<bl

= 1, 131< B<P2

= o, i32 < b.

When this is done, we have B,,

B~(@)=~@[\A(b)l lA(@+b),][U(~)U(b+ ~)]db. (21a)
o

A is a stochastic variable and U maybe considered as an

independent stochastic variable; that is, the probability

of an occurrence of one should have no effect on the

probability of occurrence of the other. If we assume this

sort of independence of A‘s and U’s, we may utilize a

theorem of probability which states that

zy=xy. (23)

The result of application of this theorem to (2 la) is

B@)= ~m I A(b) [ ) A(b+i3) I db~” U(b) U(b+13)db
o

=B;)V(P), (21b)

where V is a triangular window function associated with

the autocorrelation and given by

v(p) = o, 8<–(62– 61)

= (1 +B)(62 – h), –(P2–01)<13<0

=(1–8)(62–M, o<B<(h-

= o. (/32– /31) < b’.

In this notation, (22) becomes

a.(~) =4 f%W(D) cos a@d&

61)

(21C)

(22a)
Jo

and au may also be given

of a and v as

a.(x) =

where v is the transform of

in terms of the convolution

a(a2)*v(x) (24)

V and is given by

L ‘C_) J
The physical meaning of this is that the lines of the

spectrum, a, are looked at through a space window or a

space filter v, which has the form of (sin ax/x)2. This

means that, instead of the discrete lines, one sees each

line spread out to the shape of v. If the lines are far

enough apart in the power spectrum (that is, if the dis-

continuities are far enough apart), then the spectrum

measured will be a succession of these window functions

and one can easily locate the individual lines and their

magnitudes and, hence, the individual discontinuities

and their magnitude. On the other hand, if the discon-

tinuities are fairly close together, there will be a j um-

bling of these responses to the various discontinuities

and it will not be possible to determine the exact loca-

tion and magnitude of the individual discontinuities

but only the average distribution of discontinuities and

their average magnitude at any given spot. This cor-

responds closely to the time function situation in which

one is looking for discrete lines in a frequency spectrum

but is forced to take an inaccurate determination of

these lines due to the fact that he must use a finite

sample rather than observing for an infinite period of

time.

Using this method of analysis on the reflected pulse

should make it possible to determine without too much

difficulty the location and size of discontinuities. The

application of this method to the case where loss is

measured will be somewhat harder because of the com-

plications introduced by going through the process of

(15), but still should be quite feasible.

It has been shown that distribution functions of the

values for reflected and transmitted waves on a trans-

mission line with randomly spaced discontinuities may

be computed if something is known of the probability

distribution, average size, and number of the discon-

tinuities. Conversely, it is shown that a measurement of

transmission or reflection as a function of frequency

may be used to locate approximately the discontinuities

causing the reflection.

The techniques illustrated here should be useful both

in determining the performance of known transmission

lines and in establishing the mechanism and location for

reflections in transmission lines whose discontinuous

properties are not known.
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